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Mapping population numbers, demographics and behaviours:
The WorldPop perspective

Prof. Andrew J Tatem, University of Southampton/WorldPop (www.worldpop.org)

Measuring progress towards international health and development goals requires a reliable
baseline from which to measure change, and recent increases in spatially referenced data and
methodological advancements have advanced our abilities to measure, model and map the presence
and prevalence of many key indicators using sophisticated spatial tools. The provision of burden or
population at risk estimates generally requires linking these estimates with spatial demographic data,
but for many resource-poor countries, contemporary and regularly updated subnational data on total
population sizes, distributions, compositions and temporal trends are lacking, prompting a reliance on
uncertain estimates. WorldPop (www.worldpop.org), has worked with ministries of health, statistics
agencies and other organizations over the past decade to attempt to fill these gaps, drawing on
traditional and novel data sources to produce high spatial resolution open-access demographic data
sets.

Figure 1. Challenges of using multiple data sources
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The basis for the vast majority of our current knowledge on the spatial distribution and
composition of populations are censuses. National censuses can provide a comprehensive and
relatively unbiased source of information at a single time point (figure.1), and when linked with
accurate boundary data, provide a spatially detailed evidence base on population. Further processing
of these data through integration with higher spatial resolution ‘covariate’ datasets in modelling
frameworks, can then disaggregate these boundary-linked counts to consistent gridded representations
(figure.2), Stevens and others, 2015; Balk and others, 2006; Azar and others, 2013; Bhaduri and
others, 2002; Sorichetta and others, 2015). Moreover, while barriers and sensitivity issues remain in
accessing the most granular levels of census data at enumeration area and individual levels, efforts are
being made to improve access through microdata samples, representative at subnational levels (figure
1), https:// international.ipums.org/international, www.terrapop.org).

Conducting a national census is however an arduous, resource-intensive undertaking and is a
challenge even in countries with the necessary technology, infrastructure and financial and human
capacity. In low income nations, or those that have undergone internal strife, civil wars and frequent
changes in government, up-to-date and maintaining accurate census data is an extraordinary challenge.
Even in countries where a quality census has occurred in the past, keeping up with rapid and
inconsistent population growth remains difficult. As a result, in many low income nations, existing
census data is generally outdated, leaving both the host governments and the global community
without a reliable source of population denominators at subnational scales. The impact of this “data
deficiency” was painfully apparent with the recent Ebola outbreak in West Africa, where emergency



responders struggled to identify the location and size of rural settlements and could not accurately
calculate infection rates since the denominator was not known, an issue that is regularly encountered
(Hillson and others, 2014; Tatem, 2014). Nearly all public health outreach efforts, for example, from
vaccinations to bed nets to HIV treatment, depend on accurate target population denominators to not
only estimate project costs and resource needs, but also to measure and assess results and impact. The
MDGs and upcoming SDGs are all based on ensuring a certain percentage of the population has
access to specific services or resources, or achieves a certain level of social, economic, or physical
health. These measurements require a solid and regularly updated understanding of not only how
many people live in a country, but where the people are, and who they are.

Figure 2. WorldPop population mapping example
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Fig.2. WorldPop population mapping example: (left) Population density from census data for each
administrative level 2 unit in an area of northern Vietnam, (right] WorldPop population modelling
methods take the census data as input, then use machine learning methods to exploit the relationship
between population density and high resolution landscape features, such as those from land cover and
satellite data, to predict population densities for each 100x100m grid cell on the landscape.

Source: WorldPop (2015). Available from www.worldpop.org.

Figure 3. Conceptual approaches to producing gridded population maps
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Source: Seaman, Vincent (2015) of Bill and Melinda Gates Foundation. Personal Communication.

Such requirements and the deficiencies of national census data mean that other data sources are
increasingly being explored in efforts to produce estimates at different geographical scales and time
periods. Figure 1 highlights some of those being utilised within WorldPop to complement census data
in the detailed mapping of populations and their characteristics across timescales, and for which
examples are provided in the remainder of this document. Though increasingly prone to bias through
measurement of smaller sample sizes (for example, geo-located household survey clusters), specific
demographic groups (for example, social media) or simply factors related to population densities (for
example, satellite imagery), each source has advantages over census data in terms of the frequency of
measurement and spatial precision (figure 1). Moreover, their utilization represents a gradual shift
from “top-down” approaches where census data counts are maintained and disaggregated to small



areas, to more “bottom-up” approaches, where estimates are made independent of census data (figure
3).

A. SPATIAL DISAGGREGATION: TOP-DOWN APPROACHES

Where contemporary and reliable census data matched to accurate, detailed boundaries exist,
top-down approaches (figure 3) to population count and composition mapping are valuable in
providing an unbiased and precise picture of populations. Spatial covariate datasets used in the
population disaggregation process tend to include factors known to correlate with population densities,
such as satellite-derived maps of human settlements, urban areas, topography, lights at night, and land
cover. Additionally, infrastructure-related variables have been used, including road networks and
health facilities (for example, Stevens and others, 2015; Sorichetta and others 2015, figure 2).
Increasingly, high resolution satellite imagery processed using sophisticated image analysis
techniques, are enabling the large scale mapping of built up areas and individual buildings at fine
spatial detail (Esch and others, 2011; Pesaresi and others, 2011). These unprecedented levels of detail
in global human settlement mapping are resulting in knock-on effects in the spatial detail and
accuracy of top-down population mapping methods (for example, figure 4), and will form the basis
for WorldPop global population mapping over the coming months in collaboration with the Bill and
Melinda Gates Foundation, Joint Research Center of the European Commission, World Bank and
Center for International Earth Science Information Network.

Figure 4. Predicted population map for an area in Guatemala using WorldPop mapping methods (left) without
inclusion of global urban footprint and (right) including global urban footprint as a covariate
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Source: www.worldpop.org.

Figure 5. Improvements in population mapping in Indonesia through using geotweet densities as a covariate
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Source: Patel, N. and others (2015).



Nevertheless, all of these covariates are typically static in nature and are not direct measures of
the presence of people. The rise in data availability of user communications and check-ins through
social media, such as Twitter, presents opportunities however, in terms of a data source that is freely
available and dynamic. Although highly biased towards certain demographic groups (figure 1), and on
an average day only about 1.6 per cent of tweets are posted with an exact geolocation, many useful
geographic applications have been derived from tweet data (Leetaru and others, 2013; Hawelka and
others, 2014). The maps of geo-located tweets in countries where Twitter is popular show detailed
depictions of human activity, with the location of tweets indicative of settlements, transportation
networks, and building locations (Leetaru and others, 2013; figure 5). The integration of these data as
a covariate into approaches for the disaggregation of admin-unit based population counts shows great
potential in terms of improvements in mapping accuracies (Patel and others, 2015; figure 5). As
smartphones continue to proliferate, the results underline the potential of this data source in
contributing to the improvement of population mapping and its dynamic update (Leetaru and others,
2013). Furthermore, other sources of social media data, some country specific like Baidu (China),
Instagram, Shutterfly, and others, also offer potential when the data is not only geospatially referenced
but made freely available for research.

B. BOTTOM-UP APPROACHES

Modern technology is offering solutions to tackling the gaps in our knowledge of population
numbers and distributions in the resource poor regions where census data are unreliable, outdated or
of coarse resolution. The mapping of human settlements and even individual buildings from new
generations of satellites or from aerial photography is providing detailed geospatial data on the human
landscape (Hillson and others, 2014; Graesser and others, 2012). Computer vision and machine
learning approaches can then distinguish typologies of patterns settlement (for example, Graesser and
others, 2012), and when combined with estimates of occupancy from ground surveys, these offer a
‘bottom-up’ approach to population size estimation and mapping that potentially circumvents the
requirement for census data (for example, Hillson and others, 2014). Such an approach is being tried
in Nigeria to support vaccination planning and resource allocation efforts (figure 6,
http://vts.eocng.org) and soon to be adapted to other countries.

Figure 6. Population mapping using remote sensing and ground surveys
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Fig.6. (left) high resolution settlement extraction and typology derived from satellite imagery; (right) population estimate per grid
cell through linking the satellite-derived typologies with ground surveys. Data used in http.//vts.eocng.org.

Source: Seaman, Vincent (2015) of Bill and Melinda Gates Foundation. Personal Communication.

Vulnerable groups such as under-five-age group, women of childbearing age and the elderly
remain the focus of the Millennium Development Goals (MDGs) and Sustainable Development Goals
(SDGs). Previous approaches to estimating vulnerable populations at risk in influential health studies
have been limited by data availability and simply taken existing spatial population count data and
applied national level multipliers (for example, Murray and others, 2012; Garske and others, 2014).
Analyses have shown that, on top of the existing issues with total population counts and distributions



built on census data in resource poor settings, such an approach leads to significant differences in
vulnerable population at risk estimates over accounting for the subnational variations that are
universal in population age structures (Tatem and others, 2013). The growth in national household
surveys however, including the availability of cluster-level GPS coordinates (for example, figure 7)
are providing new contemporary and more spatially detailed data for improving estimates of
vulnerable population distributions.

Figure 7. WorldPop model-based high resolution geostatistical population mapping

Fig.7.WarldPap high resolution mapping of population age structures In the absence af census data: {left] gealocated household survey cluster data coloured by
the ion of the papulati rveyed that was under 5 years of age; (middle) predicted proportion of the population under 5 years of age per 1x1km grid
square using model-based geostatistics in o Bayesian framework; (right] map of per grid square uncertainty measure showing the level of confidence in each
prediction made in the under Syr proportion map. Adapted from Alegana et al (2015).

Source: Alegana, V. and others (2015).

Increased availability and use of geolocated cluster survey data has also coincided with greater
recognition by policymakers and researchers of the need for valid approaches to estimating health and
population indicators in small administrative areas such as districts, counties and other sub-provincial
areas—areas smaller than the usual regions upon which the sampling is powered to represent (DHS
Spatial Interpolation Working Group, 2014). Two approaches currently exist that allow collection of
indicator estimates for these small administrative areas. The first is scaling up the data collection
process by increasing the sample size, survey costs, and survey time to create a representative sample
at the desired administrative level. The second is spatial interpolation using modelling techniques to
predict values at non-surveyed locations. Given that the first approach is not feasible in an
increasingly resource-constrained environment, the second approach, which uses spatial modelling
techniques, is growing in popularity and has taken precedence in programmes such as the
Demographic and Health Surveys (DHS Spatial Interpolation Working Group, 2014). Here, both the
spatial relationships between variables measured at the cluster level and the relationships with
spatially-detailed covariate layers (such as satellite-derived land use and settlement maps, and GIS
data on infrastructure) are exploited in a Bayesian model-based geostatistical framework to map the
variable of interest along with associated uncertainty metrics. Recent WorldPop collaborative projects
have shown the potential of such approaches for mapping population age structures (figure 7; Alegana
and others, 2015), poverty (figure 8; Bird and others, 2015), and literacy and sanitation (figure 8).
Such approaches remain limited by data availability and the strength of the models, but the potential
for mapping and monitoring progress towards development goals using them has recently been
powerfully illustrated through pooling geolocated survey data on malaria prevalence (Bhatt and others,
2015).

Measuring change and providing reliable denominators across multiple time points and over
large geographic areas represents a final challenge. A census or national household survey only
records residential populations in a single snapshot (figure 1), without providing any detail of the
daily, weekly and seasonal dynamics of population movements within countries. This means it’s
difficult to accurately assess the number of people who may be affected by, for example, climate
change, or conflict, or for ascertaining in which direction a disease like Ebola is likely to spread. The
proliferation of mobile phones (MPs) offers an unprecedented solution to this data gap. The global
MP penetration rate (that is, the percentage of active MP subscriptions within the population) reached
96 per cent in 2014 (ITU, 2014). In developed countries, the number of MP subscribers surpasses the



total population, with a penetration rate now reaching 121 per cent, while in developing countries it is
as high as 90 per cent, and continuing to rise (ITU, 2014). MP networks, also called cellular networks,
are composed of cells, that is, geographic zones around a phone tower. Each MP communication can
be located by identifying the geographic coordinates of its transmitting tower and the associated cell
(Deville and others, 2014; Gonzales and others, 2008). This network-based positioning method is
simple to implement and its accuracy directly depends upon the network structure, the higher the
density of towers, the higher the precision of the MP communication geo-localization. Records
detailing the time and associated cell of calls and text messages from de-identified users therefore
provide a valuable indicator of human presence, and coupled with the increasing use of MPs, offer a
promising alternative data source for increasing the spatial and temporal detail of large-scale
population data sets.

Figure 8. WorldPop Bayesian geostatistical 1x1km mapping of population characteristics from GPS-located
household survey cluster data

Fig.B. Bayesian geostatistical 1x1km mapping of population charocteristics from GPS-located household survey cluster data.
{top-left) predicted mean poverty in northern india measured using the progress out of poverty index (PPI);

(top-right) standard deviation in PPl estimates; (bottom-left) predicted mean female literacy rate in Nigerio;

(bottom-right) predicted percentage of the population with access to sanitation in Ugenda

Source: Gething, Peter and others (2015); Bird, T. and others (2015); and www.worldpop.org.

Recent analyses have shown that by using just a small segment of de-identified data that is
already stored by mobile network operators, it is possible to rapidly produce detailed and up-to-date
population distribution maps, sidestepping the need for the cumbersome once-a-decade census in
providing such data (Deville and others, 2014; figure 9). Moreover, by using only phone call activity
aggregated by tower, neither individual data nor connections between towers are used, guaranteeing
the privacy of MP users, and overcoming concerns about data sensitivity. The analysis of MP data
that is already collected every day by phone network providers can complement traditional census
outputs, both in spatial and temporal terms. Not only can population maps of comparable accuracy to
census data and existing downscaling methods be constructed solely from MP data (Deville and
others, 2014), but these data offer additional benefits in terms of the measurements of population
dynamics (for example, www.flowminder.org). Further, a combination of both the MP and remote
sensing-based methods (Stevens and others, 2015) facilitates the improvement of both spatial and
temporal resolutions and demonstrates how high resolution population datasets can be produced for
any time period (Deville and others, 2015).

As these phone call records are continually collected, this also provides unprecedented insight
into the nature of human population dynamics. Distribution maps can be easily drawn up for any
period required—for example, day versus night, weekday versus weekend, workday versus holiday



difference. At little cost, this can help answer the type of questions that have previously been
logistically challenging: how did population movements drive a cholera outbreak (Bengtsson and
others, 2015; figure 10)? How have people reacted in the days following a devastating earthquake
(www.worldpop.org.uk/nepal; figure 10)? How do health facility catchment population sizes change
seasonally (Erbach-Schoenberg and others, 2015; Tatem and others, 2014)? A facilitated access to
anonymized and aggregated forms of these data would greatly improve our knowledge of human
population distribution and movements. Network providers are reticent to share their data because of
privacy and marketing concerns. However, analyses have shown that aggregated and de-identified MP
data could cost-effectively provide accurate maps of population distribution for every country in the
world for every month (Deville and others, 2014). This processing could become a routine step,
providing a substantially improved and timely understanding of population spatiotemporal dynamics,
and will become a core activity of WorldPop-Flowminder over the coming vyear
(www.worldpop.org.uk/about_our_work/case_studies).

Figure 9. Mapping population density dynamics using cellphone data (circa 2014)
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Fig.9. Mapping population density dynamics using cellphone data:

(top) population density changes in France during holiday and work periods;

(bottom-left) population density change in early January in Namibia;

(bottom-right) population density change from weekend to weekday in the Accra region of Ghana.

Source: Deville, P., and others (2014); Erbach-Schoenberg, E., and others (2015).

Figure 10. Mapping population dynamics in (left) Haiti and (right) post-quake Nepal

@ Mecssve @ Posve
20,000
50,000
100,000
200 00X
- ° b
't L* .0
. . L]
O
g * . i
.. @ o ele
... - .
FLOWMINDER DRG iRl 9% p

Source: Bengtsson, L., and others (2015). Available from www.worldpop.org.uk/nepal.



1. Future directions and recommendations

Spatial demographic data sets and production methods are rapidly improving, fuelled by
improvements in technology and computing, but substantial limitations and uncertainties remain,
particularly for those regions of the world where little data exists on how many people there are,
where they live and their characteristics. Such uncertainties inherent in the demographic data sets used
to provide denominators and processing steps taken are rarely acknowledged or accounted for,
resulting in hidden uncertainties in many high impact development and health burden studies that are
guiding international policies. In order to be able to measure progress in tracking development goals
effectively, there is need for both methods to quantify the uncertainty inherent in spatial demographic
data, and reliable denominator baselines from which to measure from—at present, for many of the
resource-poor regions of the world these are still lacking, but as highlighted here, many opportunities
exist. The integration of different forms of data can build on the strengths of each to overcome and
account for weaknesses, gaps and biases (figure 1). Examples already exist, such as those outlined
above that integrate cellphone, satellite, census and survey data, but the full potential has yet to be
realised. The integration of these data into rigorous and robust spatiotemporal demographic modelling
frameworks, with full quantification of uncertainty, represents an important next step, together with
the strengthening of national statistical capacity to continue to provide high quality baseline data.
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