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Mapping population numbers, demographics and behaviours:  
The WorldPop perspective 

 
Prof. Andrew J Tatem, University of Southampton/WorldPop (www.worldpop.org) 

 
Measuring progress towards international health and development goals requires a reliable 

baseline from which to measure change, and recent increases in spatially referenced data and 
methodological advancements have advanced our abilities to measure, model and map the presence 
and prevalence of many key indicators using sophisticated spatial tools. The provision of burden or 
population at risk estimates generally requires linking these estimates with spatial demographic data, 
but for many resource-poor countries, contemporary and regularly updated subnational data on total 
population sizes, distributions, compositions and temporal trends are lacking, prompting a reliance on 
uncertain estimates. WorldPop (www.worldpop.org), has worked with ministries of health, statistics 
agencies and other organizations over the past decade to attempt to fill these gaps, drawing on 
traditional and novel data sources to produce high spatial resolution open-access demographic data 
sets. 

 

Figure 1. Challenges of using multiple data sources 
 

 

Source: Developed by author. 

The basis for the vast majority of our current knowledge on the spatial distribution and 
composition of populations are censuses. National censuses can provide a comprehensive and 
relatively unbiased source of information at a single time point (figure.1), and when linked with 
accurate boundary data, provide a spatially detailed evidence base on population. Further processing 
of these data through integration with higher spatial resolution ‘covariate’ datasets in modelling 
frameworks, can then disaggregate these boundary-linked counts to consistent gridded representations 
(figure.2), Stevens and others, 2015; Balk and others, 2006; Azar and others, 2013; Bhaduri and 
others, 2002; Sorichetta and others, 2015). Moreover, while barriers and sensitivity issues remain in 
accessing the most granular levels of census data at enumeration area and individual levels, efforts are 
being made to improve access through microdata samples, representative at subnational levels (figure 
1), https:// international.ipums.org/international, www.terrapop.org). 

 
Conducting a national census is however an arduous, resource-intensive undertaking and is a 

challenge even in countries with the necessary technology, infrastructure and financial and human 
capacity.  In low income nations, or those that have undergone internal strife, civil wars and frequent 
changes in government, up-to-date and maintaining accurate census data is an extraordinary challenge.  
Even in countries where a quality census has occurred in the past, keeping up with rapid and 
inconsistent population growth remains difficult.  As a result, in many low income nations, existing 
census data is generally outdated, leaving both the host governments and the global community 
without a reliable source of population denominators at subnational scales.  The impact of this “data 
deficiency” was painfully apparent with the recent Ebola outbreak in West Africa, where emergency 
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areas, to more “bottom-up” approaches, where estimates are made independent of census data (figure 
3).  
 

A. SPATIAL DISAGGREGATION: TOP-DOWN APPROACHES 
 

Where contemporary and reliable census data matched to accurate, detailed boundaries exist, 
top-down approaches (figure 3) to population count and composition mapping are valuable in 
providing an unbiased and precise picture of populations. Spatial covariate datasets used in the 
population disaggregation process tend to include factors known to correlate with population densities, 
such as satellite-derived maps of human settlements, urban areas, topography, lights at night, and land 
cover. Additionally, infrastructure-related variables have been used, including road networks and 
health facilities (for example, Stevens and others, 2015; Sorichetta and others 2015, figure 2). 
Increasingly, high resolution satellite imagery processed using sophisticated image analysis 
techniques, are enabling the large scale mapping of built up areas and individual buildings at fine 
spatial detail (Esch and others, 2011; Pesaresi and others, 2011). These unprecedented levels of detail 
in global human settlement mapping are resulting in knock-on effects in the spatial detail and 
accuracy of top-down population mapping methods (for example, figure 4), and will form the basis 
for WorldPop global population mapping over the coming months in collaboration with the Bill and 
Melinda Gates Foundation, Joint Research Center of the European Commission, World Bank and 
Center for International Earth Science Information Network.  

 
Figure 4. Predicted population map for an area in Guatemala using WorldPop mapping methods (left) without 

inclusion of global urban footprint and (right) including global urban footprint as a covariate 
 

  

 

    Source: www.worldpop.org. 

 

Figure 5. Improvements in population mapping in Indonesia through using geotweet densities as a covariate 

 
 

         Source: Patel, N. and others (2015).  
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Nevertheless, all of these covariates are typically static in nature and are not direct measures of 
the presence of people. The rise in data availability of user communications and check-ins through 
social media, such as Twitter, presents opportunities however, in terms of a data source that is freely 
available and dynamic. Although highly biased towards certain demographic groups (figure 1), and on 
an average day only about 1.6 per cent of tweets are posted with an exact geolocation, many useful 
geographic applications have been derived from tweet data (Leetaru and others, 2013; Hawelka and 
others, 2014). The maps of geo-located tweets in countries where Twitter is popular show detailed 
depictions of human activity, with the location of tweets indicative of settlements, transportation 
networks, and building locations (Leetaru and others, 2013; figure 5). The integration of these data as 
a covariate into approaches for the disaggregation of admin-unit based population counts shows great 
potential in terms of improvements in mapping accuracies (Patel and others, 2015; figure 5). As 
smartphones continue to proliferate, the results underline the potential of this data source in 
contributing to the improvement of population mapping and its dynamic update (Leetaru and others, 
2013). Furthermore, other sources of social media data, some country specific like Baidu (China), 
Instagram, Shutterfly, and others, also offer potential when the data is not only geospatially referenced 
but made freely available for research. 

 
 

B. BOTTOM-UP APPROACHES 
 

Modern technology is offering solutions to tackling the gaps in our knowledge of population 
numbers and distributions in the resource poor regions where census data are unreliable, outdated or 
of coarse resolution. The mapping of human settlements and even individual buildings from new 
generations of satellites or from aerial photography is providing detailed geospatial data on the human 
landscape (Hillson and others, 2014; Graesser and others, 2012). Computer vision and machine 
learning approaches can then distinguish typologies of patterns settlement (for example, Graesser and 
others, 2012), and when combined with estimates of occupancy from ground surveys, these offer a 
‘bottom-up’ approach to population size estimation and mapping that potentially circumvents the 
requirement for census data (for example, Hillson and others, 2014). Such an approach is being tried 
in Nigeria to support vaccination planning and resource allocation efforts (figure 6, 
http://vts.eocng.org) and soon to be adapted to other countries. 

 
Figure 6. Population mapping using remote sensing and ground surveys 

 

      Source: Seaman, Vincent (2015) of Bill and Melinda Gates Foundation. Personal Communication. 
 
Vulnerable groups such as under-five-age group, women of childbearing age and the elderly 

remain the focus of the Millennium Development Goals (MDGs) and Sustainable Development Goals 
(SDGs). Previous approaches to estimating vulnerable populations at risk in influential health studies 
have been limited by data availability and simply taken existing spatial population count data and 
applied national level multipliers (for example, Murray and others, 2012; Garske and others, 2014). 
Analyses have shown that, on top of the existing issues with total population counts and distributions 



5 
 

built on census data in resource poor settings, such an approach leads to significant differences in 
vulnerable population at risk estimates over accounting for the subnational variations that are 
universal in population age structures (Tatem and others, 2013). The growth in national household 
surveys however, including the availability of cluster-level GPS coordinates (for example, figure 7) 
are providing new contemporary and more spatially detailed data for improving estimates of 
vulnerable population distributions. 

 
Figure 7. WorldPop model-based high resolution geostatistical population mapping 

 

  Source: Alegana, V. and others (2015). 

 
Increased availability and use of geolocated cluster survey data has also coincided with greater 

recognition by policymakers and researchers of the need for valid approaches to estimating health and 
population indicators in small administrative areas such as districts, counties and other sub-provincial 
areas—areas smaller than the usual regions upon which the sampling is powered to represent (DHS 
Spatial Interpolation Working Group, 2014). Two approaches currently exist that allow collection of 
indicator estimates for these small administrative areas. The first is scaling up the data collection 
process by increasing the sample size, survey costs, and survey time to create a representative sample 
at the desired administrative level. The second is spatial interpolation using modelling techniques to 
predict values at non-surveyed locations. Given that the first approach is not feasible in an 
increasingly resource-constrained environment, the second approach, which uses spatial modelling 
techniques, is growing in popularity and has taken precedence in programmes such as the 
Demographic and Health Surveys (DHS Spatial Interpolation Working Group, 2014). Here, both the 
spatial relationships between variables measured at the cluster level and the relationships with 
spatially-detailed covariate layers (such as satellite-derived land use and settlement maps, and GIS 
data on infrastructure) are exploited in a Bayesian model-based geostatistical framework to map the 
variable of interest along with associated uncertainty metrics. Recent WorldPop collaborative projects 
have shown the potential of such approaches for mapping population age structures (figure 7; Alegana 
and others, 2015), poverty (figure 8; Bird and others, 2015), and literacy and sanitation (figure 8). 
Such approaches remain limited by data availability and the strength of the models, but the potential 
for mapping and monitoring progress towards development goals using them has recently been 
powerfully illustrated through pooling geolocated survey data on malaria prevalence (Bhatt and others, 
2015). 

 
Measuring change and providing reliable denominators across multiple time points and over 

large geographic areas represents a final challenge. A census or national household survey only 
records residential populations in a single snapshot (figure 1), without providing any detail of the 
daily, weekly and seasonal dynamics of population movements within countries. This means it’s 
difficult to accurately assess the number of people who may be affected by, for example, climate 
change, or conflict, or for ascertaining in which direction a disease like Ebola is likely to spread. The 
proliferation of mobile phones (MPs) offers an unprecedented solution to this data gap. The global 
MP penetration rate (that is, the percentage of active MP subscriptions within the population) reached 
96 per cent in 2014 (ITU, 2014). In developed countries, the number of MP subscribers surpasses the 
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1. Future directions and recommendations 
 

Spatial demographic data sets and production methods are rapidly improving, fuelled by 
improvements in technology and computing, but substantial limitations and uncertainties remain, 
particularly for those regions of the world where little data exists on how many people there are, 
where they live and their characteristics. Such uncertainties inherent in the demographic data sets used 
to provide denominators and processing steps taken are rarely acknowledged or accounted for, 
resulting in hidden uncertainties in many high impact development and health burden studies that are 
guiding international policies. In order to be able to measure progress in tracking development goals 
effectively, there is need for both methods to quantify the uncertainty inherent in spatial demographic 
data, and reliable denominator baselines from which to measure from—at present, for many of the 
resource-poor regions of the world these are still lacking, but as highlighted here, many opportunities 
exist. The integration of different forms of data can build on the strengths of each to overcome and 
account for weaknesses, gaps and biases (figure 1). Examples already exist, such as those outlined 
above that integrate cellphone, satellite, census and survey data, but the full potential has yet to be 
realised. The integration of these data into rigorous and robust spatiotemporal demographic modelling 
frameworks, with full quantification of uncertainty, represents an important next step, together with 
the strengthening of national statistical capacity to continue to provide high quality baseline data. 
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